Document Type : Original Article

Author

Department of fisheries, Hamoun International Wetland Research Institute, University of Zabol, Zabol, Iran

10.26655/ijabbr.2016.2.14

Abstract

Vibrio cholerae is a human pathogen that causes mild to severe diarrheal illnesses and has major public health significance. The aim of this study was to investigate the effects of antimicrobial activity of the gold nanoparticles on Vibrio cholera. Gold and Silver nanoparticles are chemically synthesized. Standard strain of Vibrio cholerawas cultured in a nutrient broth. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was determined by micro dilution.

Keywords

Adavallan, K., Krishnakumar, N., 2014. Mulberry leaf extract mediated synthesis of gold nanoparticles and its antibacterial activity against human pathogens. Advances in Natural Sciences: Nanosci. Nanotechnol., 5(2).
Asadian, S., Ghahfarokhi Naji, T., Mazdapour, M., Kazemi, J., Tajehmiri, A., 2014. Antibacterial effect of silver nanoparticles on Bacillus cereus. Int. J. Basic. Sci., 2(2), 6-11.
Chinnapen, D.J.F., Chinnapen, H., Saslowsky, D., Lencer, W.I., 2007. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS microbiology letters. 266(2), 129-37.
Chwalibog, A., Sawosz, E., Hotowy, A., Szeliga, J., Mitura, S., Mitura, K., 2010. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed., 6(5), 1085-1094.
Costa, C., Conte, A., Buonocore, G.G., Del Nobile, M.A., 2011. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int. J. Food. Microbiol., 05, 018.
Dallas, P., Sharma, V.K., Zboril, R., 2011. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid. Interf. Sci., 166(1–2), 119-35.
Han, G., Craig, T.M., Rotello, M.V., 2006. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents, J. Chem. Biol. Drug. Des., 67, 78-82.
Hill, D.R., Ford, L., Lalloo, D.G., 2006. Oral cholera vaccines: use in clinical practice. The Lancet Infectious Diseases, 6(6), 361-73.
Kalbasi, M., Abdolahzadeh, A., Salarigo, H., 2012. The effect ofcolloidal silvernanoparticlesonthe intestinal bacterial flora population of rainbowtrout. J. Vet. Res., 67(2), 181-189.
Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., Mohan, N., 2010. Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens.
Collsurfa B: Biointerfaces. 76, 50-56. Kumar, R., Münstedt, H., 2005. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. j.
biomater., 26(14), 2081-8.
Naghsh, N., Solemani, S., Torkan, S., 2013. Inhibitory effectsof silver nanoparticleswithethanol extract of eucalyptuson the growth ofthe E.coli. J. Gorgan. Univ. Med. Sci., 15(2), 60-63.
Soltani, M., Esfandiary, M., Sajadi, M.M., Khazraeenia, S., Bahonar, A.R., Ahari, H., 2011. Effect of nanosilver particles on hatchability of rainbow trout (Oncorhynchusmykiss) egg and survival of theproduced larvae. I. J.
F. S. 10, 167-176.
Soltani, M., Ghodratnema, M., Ahari, H., Ebrahimzadeh Mousavi, H.A., Atee, M., Dastmalchi, F., 2009. The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcusgarvieae, Yersinia ruckeri and Aeromonashydrophila. Int. J. Vet. Res., 3, 137-142.
Vanden Broeck, D., Horvath, C., De Wolf, M.J.S., 2007. Vibrio cholerae: cholera toxin. Int. J. Biochem. Cell. Biol., 39(10), 1771-5.
Zawrah, M.F., Abd El-moez, S.I., 2011. Antimicrobial activities of gold nanoparticles against major food borne pathogens. Life. Sci. J., 8(4), 37-44.